Loading...
Projects / Programmes source: ARIS

Multi-scale modeling of non-equilibrium quantum materials

Research activity

Code Science Field Subfield
1.02.01  Natural sciences and mathematics  Physics  Physics of condesed matter 

Code Science Field
1.03  Natural Sciences  Physical sciences 
Keywords
quantum materials, nonequilibrium dynamics, many-body quantum systems, metastability, resistance-switching memory devices, numerical simulations
Evaluation (rules)
source: COBISS
Points
6,207.79
A''
2,300.38
A'
3,341.87
A1/2
5,367.13
CI10
14,511
CImax
672
h10
55
A1
23.89
A3
3.29
Data for the last 5 years (citations for the last 10 years) on May 19, 2024; A3 for period 2018-2022
Data for ARIS tenders ( 04.04.2019 – Programme tender, archive )
Database Linked records Citations Pure citations Average pure citations
WoS  899  25,055  21,030  23.39 
Scopus  887  25,652  21,657  24.42 
Researchers (11)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  55655  PhD Banhi Chatterjee  Physics  Researcher  2021 - 2023 
2.  33317  PhD Denis Golež  Physics  Head  2020 - 2024  104 
3.  19274  PhD Viktor Kabanov  Physics  Researcher  2020 - 2024  373 
4.  04540  PhD Dragan D. Mihailović  Physics  Researcher  2020 - 2024  1,219 
5.  25625  PhD Jernej Mravlje  Physics  Researcher  2020 - 2024  131 
6.  57725  PhD Alexander Osterkorn  Physics  Researcher  2023 - 2024  10 
7.  01105  PhD Peter Prelovšek  Physics  Researcher  2020 - 2024  424 
8.  56731  PhD Madhumita Sarkar  Physics  Researcher  2022 - 2024 
9.  29545  PhD Lev Vidmar  Physics  Researcher  2020 - 2024  136 
10.  50514  PhD Jaka Vodeb  Physics  Junior researcher  2020 - 2021  63 
11.  23567  PhD Rok Žitko  Physics  Researcher  2020 - 2024  253 
Organisations (1)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  0106  Jožef Stefan Institute  Ljubljana  5051606000  90,987 
Abstract
The vision of this project is to provide a firm theoretical framework for a description of ultrafast material response and to enhance and simplify the transfer of theoretical ideas to the experimental community. During the last years, PI has developed powerful tools based on numerical solutions of non-equilibrium Keldysh theory allowing for an advanced description of material responses, while still relying on model simplifications. This project aims to push the theory to the level where material-specific properties of strongly correlated systems out of equilibrium are taken into account and hence provide an ab initio, parameter-free theory. We will apply the description to the question of metastability in transition metal dichalcogenides and in particular to the question of the hidden phase in 1T-TaS2. Applications of these powerful theoretical tools and a direct comparison with experimental probes, like time-resolved optical experiments or scanning tunneling spectroscopy will provide a unique insight into the microscopical nature of the metastable phase. We will explore the dynamical interplay of Mott, charge-density-wave and polaronic physics to understand the formation of microscopic domain structures. We will complement the microscopical description with phenomenological approaches to understand the global topological properties of domain wall structures, like chiral or amorphous-like state. The ability to simulate material responses on electronic time scales will provide crucial guidance for the manipulation of materials and their applications for ultra-fast all-electronic resistance-switching memory devices.
Views history
Favourite