Projects / Programmes source: ARIS

Surface-selective hybridization technology for magneto-electric hybrids

Research activity

Code Science Field Subfield
2.04.01  Engineering sciences and technologies  Materials science and technology  Inorganic nonmetallic materials 

Code Science Field
2.10  Engineering and Technology  Nano-technology 
hybrids, magneto-electric, surface-selective reactions, nanoplatelets, Janus nanoparticles, surface hybridization technology, reactions on solid surfaces
Evaluation (rules)
source: COBISS
Researchers (12)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  32402  Bernarda Anželak    Technical associate  2020 - 2023  46 
2.  26478  PhD Sašo Gyergyek  Materials science and technology  Researcher  2020 - 2023  291 
3.  51672  PhD Monika Horvat  Chemistry  Researcher  2020 - 2022  40 
4.  14680  PhD Jernej Iskra  Chemistry  Researcher  2020 - 2023  398 
5.  15148  PhD Darja Lisjak  Materials science and technology  Head  2020 - 2023  412 
6.  10372  PhD Darko Makovec  Materials science and technology  Researcher  2020 - 2023  667 
7.  14079  PhD Alenka Mertelj  Physics  Researcher  2020 - 2023  292 
8.  53779  PhD Jelena Papan Djaniš  Biochemistry and molecular biology  Researcher  2022 - 2023  39 
9.  39151  PhD Griša Grigorij Prinčič  Chemistry  Researcher  2020 - 2023  30 
10.  39399  PhD Nerea Sebastian Ugarteche  Physics  Researcher  2020 - 2023  120 
11.  56033  Luka Skubic  Chemical engineering  Researcher  2022 - 2023  21 
12.  55260  PhD Ali Tufani  Materials science and technology  Researcher  2022 - 2023  24 
Organisations (2)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  0106  Jožef Stefan Institute  Ljubljana  5051606000  90,682 
2.  0103  University of Ljubljana, Faculty of Chemistry and Chemical Technology  Ljubljana  1626990  23,083 
Our ambition is to develop a new surface-selective hybridization technology for the fabrication of a new magneto-electric (ME) material – a material that does not exist right now, but will enable contactless remote generation and conversion of electric energy and, waste-energy harvesting, magnetometers and electric-field sensors for smart-grid and transportations-systems, large-sensitive-area force sensors, and wireless signal-transmission systems in industrial and service robotics. Until recently, a homogeneous ferroic order was considered specific to solid materials. However, our recent discovery of ferromagnetic liquids overturned the established paradigm. Based on this, we propose a new class of materials, a ME liquid. The basic ingredient of our ME liquid will be ME nanoplatelets (NPLs). The ME-NPLs will be made of core magnetic NPLs, hybridized with electrically polar organics only on one of the two basal planes. For their fabrication, we will develop a new hybridization technology that will enable surface selectivity by magnetic or/and chemical immobilization of magnetic NPLs on a solid substrate. The hybridization with polar organics will take place only on the exposed surfaces. Finally, the ME-NPLs will be electrically isolated with a nonpolar ending. New multilevel synthesis of organics will be developed to tackle the complexity of the needed surface reactions. The harvested ME-NPLs will be dispersed in a nonpolar solvent to form a ME liquid. In such ME liquid, either of the two external fields will induce the magnetization and electric polarization. The ME coupling and fluidity will enable coupling with other functionalities (not possible in the solid-state), such as rheological behaviour, and flexible shaping and positioning by external fields. Fundamental studies of their behaviours will open new horizons in soft-matter physics. Complementary background of the leading researchers and their teams will address all interdisciplinary challenges: materials science, organic chemistry and physics.
Views history