Projects / Programmes source: ARIS

Development of building blocks for new European quantum communication network

Research activity

Code Science Field Subfield
2.21.00  Engineering sciences and technologies  Technology driven physics   

Code Science Field
1.03  Natural Sciences  Physical sciences 
quantum communication, quantum memory, entangled photons, single-photon detectors, electromagnetic induced transparency
Evaluation (rules)
source: COBISS
Data for the last 5 years (citations for the last 10 years) on May 28, 2024; A3 for period 2018-2022
Data for ARIS tenders ( 04.04.2019 – Programme tender, archive )
Database Linked records Citations Pure citations Average pure citations
WoS  444  9,809  8,417  18.96 
Scopus  443  10,433  9,052  20.43 
Researchers (12)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  14080  PhD Denis Arčon  Physics  Researcher  2020 - 2024  596 
2.  55471  PhD Roopayan Ghosh  Physics  Researcher  2022 
3.  21545  PhD Peter Jeglič  Physics  Researcher  2020 - 2024  220 
4.  53022  PhD Rainer Oliver Kaltenbaek  Physics  Researcher  2020 - 2024  73 
5.  29515  PhD Gregor Kladnik  Physics  Researcher  2022 - 2024  77 
6.  03321  Ivan Kvasić  Physics  Technical associate  2020 - 2024  22 
7.  39153  PhD Tadej Mežnaršič  Physics  Junior researcher  2020 - 2022  35 
8.  00400  PhD Dušan Ponikvar  Physics  Researcher  2022 - 2024  127 
9.  55093  Žiga Pušavec  Physics  Researcher  2021 - 2024 
10.  04544  PhD Anton Ramšak  Computer science and informatics  Head  2020 - 2024  199 
11.  39157  PhD Marion Antonia Van Midden Mavrič  Physics  Junior researcher  2020 - 2021  45 
12.  28235  PhD Erik Zupanič  Physics  Researcher  2020 - 2024  131 
Organisations (2)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  1554  University of Ljubljana, Faculty of Mathematics and Physics  Ljubljana  1627007  34,298 
2.  0106  Jožef Stefan Institute  Ljubljana  5051606000  91,025 
Quantum technology promises applications beyond the capabilities of established technologies. Well-known examples are quantum computers and quantum-enhanced sensing. Harnessing the full potential of quantum technology will require the establishment of quantum networks that distribute quantum resources between distant communication partners. In what has become a quantum technology race, significant global efforts have been put into realizing the central building blocks and the infrastructure for this new technology. China launched the first quantum satellite, and they established a large network of rudimentary quantum nodes. Last year, the US enacted the National Quantum Initiative Act, focusing efforts towards quantum networks, quantum communication and quantum computing. In Europe, the Quantum Flagship was an important step to keep abreast of these developments, but it mostly boosted research efforts in some parts of Western Europe. The present project aims to realize central building blocks for building a quantum network in South-Eastern Europe. These efforts will strengthen quantum expertise in Slovenia and Croatia and establish our countries as competitive partners in quantum technology. In particular, we will realize several key ingredients of a quantum internet: narrow-band sources compatible with telecom wavelengths and with atom-based quantum memories. This will allow a proof-of-principle demonstration towards the key missing ingredient for global quantum networks: a quantum repeater. Research and development activities will strengthen research capacities and foster collaboration between groups in Slovenia and Croatia and establish a necessary critical mass to connect local quantum network to those operating at the European level.
Views history