Loading...
International projects source: SICRIS

Bioinspired living skin for architecture

Researchers (1)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  50366  PhD Anna Malgorzata Sandak  Forestry, wood and paper technology  Head  2022 - 2024  256 
Organisations (1)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  3770  InnoRenew CoE Renewable Materials and Healthy Environments Research and Innovation Centre of Excellence  Izola  7233817000  2,771 
Abstract
Biofilms, an assemblage of surface-associated microbial cells that is enclosed in an extracellular polymeric substance matrix, are recognised as one of the most stable biological systems on earth. The beneficial use of biofilms for protection is nearly unexplored since up-to-date research is focused on the prevention of its formation. In the ARCHI-SKIN project, we will explore the design principles underlying fungal biofilm to bridge the knowledge gap on the chemistry-structure-properties of the biological systems’ interface. Mechanisms of biofilm formation, its structure, function, quorum sensing, and performance will be understood at multiple scales following the best practices of materiomics. It will be achieved by advancing state-of-the-art in-situ laboratory routines and use the latest mathware solutions in combination with the design-build-test-learn approach for the experimental work. In the following step, we will develop a bioactive protective coating system working in conjunction with nature. We will benefit from the synergic strength of living fungal cells, bio-based ingredients, and bioinspired concepts for materials protection. Advanced in-silico methods will be used for the integration of active ingredients and modelling of optimal and long-lasting nutrient sources compatible with the enzymatic profile of selected fungal strains. We will design and create technically applicable, controlled, and optimized biofilm built by the yeast-like ubiquitous and widespread oligotroph fungus, Aureobasidium pullulans, that will effectively protect the surfaces of biomaterials, concrete, plastics, and metals, among others, assuring optimal service life performance and remarkable functionalities including self-healing and bioremediation. Our pioneering approach for materials protection will push the boundaries of traditional materials concepts toward the development of engineered living materials capable to interact, adapt, and respond to environmental changes.
Views history
Favourite