Projects / Programmes source: ARIS

Teorija dimenzij in geometrijska topologija (Slovene)

Research activity

Code Science Field Subfield
1.01.00  Natural sciences and mathematics  Mathematics   

Code Science Field
P150  Natural sciences and mathematics  Geometry, algebraic topology 
Evaluation (rules)
source: COBISS
Researchers (10)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  03342  PhD Matija Cencelj  Mathematics  Researcher  2001 - 2003  222 
2.  20977  PhD Bojan Gornik  Mathematics  Researcher  2001 - 2003 
3.  05485  PhD Jože Malešič  Mathematics  Researcher  2001 - 2003  224 
4.  19420  PhD Aleksandar Mijatović  Mathematics  Researcher  2001 - 2003  28 
5.  08947  PhD Nežka Mramor Kosta  Mathematics  Researcher  2001 - 2003  207 
6.  10768  PhD Petar Pavešić  Mathematics  Researcher  2001 - 2003  251 
7.  07083  PhD Dušan Repovš  Mathematics  Head  2001 - 2003  1,538 
8.  08728  PhD Pavle Saksida  Mathematics  Researcher  2001 - 2003  90 
9.  00724  PhD Jože Vrabec  Mathematics  Researcher  2001 - 2003  358 
10.  13651  PhD Matjaž Željko  Mathematics  Researcher  2001 - 2003  265 
Organisations (1)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  0101  Institute of Mathematics, Physics and Mechanics  Ljubljana  5055598000  20,138 
The object of our research will be numerous unsolved problems of contemporary topology. In general topology we shall investigate theory of continuous selections of multivalued mappings on Banach spaces and geometric aspects of (general and cohomological) dimension theory of compact metric spaces (mostly theory of general position for continuous maps into Euclidean spaces of higher dimensions. In algebraic topology we shall investigate theory of cohomological dimension over nonabelian groups (mostly in connection with the problem of rising dimension under cell-like mappings on topological 4-manifolds), actions by various classes of topological (e.g. Lie) groups on equivariant CW complexes, groups of homotopy auto-equivalences and the Hilbert-Smith conjecture for Riemannian manifolds (mostly generalizations from the Lipschitz-Hoelder case to the general case). In topological manifolds we shall investigate (homogeneous) wild Cantor sets in Euclidean spaces of dimensions 3 and 4 (mostly various forms of characterization of wild embeddings and various ambient homogeneities), theory of knots and links, obstruction theory for surgery on manifold pairs and questions from PL and DIFF topology. We shall also study integrable systems and Kac-Moody algebras. The proposed research is related to and continues the previous very successful investigations by this program group in this field and is also connected to the problems, which we are studying in several international projects run by this program group.
Most important scientific results Final report
Most important socioeconomically and culturally relevant results Final report
Views history