Loading...
Projects / Programmes source: ARIS

Spectroscopic imaging of mechanical stress fields in mesomorphic elastomers with magnetic resonance

Research activity

Code Science Field Subfield
1.02.00  Natural sciences and mathematics  Physics   

Code Science Field
P260  Natural sciences and mathematics  Condensed matter: electronic structure, electrical, magnetic and optical properties, supraconductors, magnetic resonance, relaxation, spectroscopy 
P250  Natural sciences and mathematics  Condensed matter: structure, thermal and mechanical properties, crystallography, phase equilibria 
Keywords
magnetic resonance spectroscopy, magnetic resonance imaging, elastomers, liquid crytals, mechanical strain, mechanical stress
Evaluation (rules)
source: COBISS
Researchers (8)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  21506  PhD Matej Bažec  Physics  Researcher  2005 - 2007  53 
2.  22317  PhD Andrija Lebar  Pharmacy  Junior researcher  2004 - 2005  68 
3.  14574  PhD Mojca Urška Mikac  Physics  Researcher  2004 - 2007  150 
4.  07925  Ana Sepe    Technical associate  2004 - 2007  131 
5.  12056  PhD Igor Serša  Physics  Researcher  2004 - 2007  471 
6.  17046  PhD Gregor Skačej  Physics  Researcher  2004 - 2007  108 
7.  07527  PhD Boštjan Zalar  Physics  Head  2004 - 2007  322 
8.  26026  PhD Blaž Zupančič  Physics  Researcher  2006 - 2007  44 
Organisations (2)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  0106  Jožef Stefan Institute  Ljubljana  5051606000  90,742 
2.  1554  University of Ljubljana, Faculty of Mathematics and Physics  Ljubljana  1627007  34,117 
Abstract
Mesomorphic elastomers are composed of self-organizing molecular units embedded in crosslinked polymer chains. They excel in the potential for applications since their geometrical shape can be changed almost without any energy cost by external strain, electric and magnetic fields, or by exposure to light of visible- or near-visible-range wavelengths. However, any spatial anomalies in the resulting mechanical stress can give rise to strong, uncontrollable and possibly random deformation of the targeted sample geometry. In order to understand the interplay between the parameters of external fields and the actual shape of the sample, it is of a paramount importance to accurately image the spatial profile of the mechanical stress field. The current state of the art of stress imaging cannot provide appropriate methods to meet this goal. We propose to achieve that by combining solid state nuclear magnetic resonance techniques and magnetic resonance microscopy techniques into a novel, rapid and uninvasive imaging technique specifically adapted for mesomorphic elastomers.
Views history
Favourite