Projects / Programmes source: ARIS

Maps on algebras

Research activity

Code Science Field Subfield
1.01.01  Natural sciences and mathematics  Mathematics  Analysis 

Code Science Field
P001  Natural sciences and mathematics  Mathematics 
P140  Natural sciences and mathematics  Series, Fourier analysis, functional analysis 
P120  Natural sciences and mathematics  Number theory, field theory, algebraic geometry, algebra, group theory 
operator, operator algebra, algebra, ring, Banach algebra, Lie algera, Jordan algebra, function identities, preservers, derivation, automorphism, geometry of matrices
Evaluation (rules)
source: COBISS
Researchers (11)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  19551  PhD Dominik Benkovič  Mathematics  Researcher  2007 - 2008  212 
2.  18750  PhD Gregor Dolinar  Mathematics  Researcher  2009  216 
3.  19550  PhD Daniel Eremita  Mathematics  Researcher  2007 - 2008  133 
4.  23005  PhD Ajda Fošner  Mathematics  Researcher  2007 - 2009  381 
5.  20272  PhD Maja Fošner  Administrative and organisational sciences  Researcher  2007 - 2008  218 
6.  29707  PhD Mateja Grašič  Mathematics  Researcher  2008  39 
7.  06084  PhD Bojan Hvala  Mathematics  Researcher  2009  243 
8.  19549  PhD Irena Kosi Ulbl  Mathematics  Researcher  2009  103 
9.  02297  PhD Peter Legiša  Mathematics  Researcher  2009  455 
10.  23340  PhD Janko Marovt  Mathematics  Researcher  2007 - 2009  255 
11.  05953  PhD Peter Šemrl  Mathematics  Head  2007 - 2009  497 
Organisations (1)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  0101  Institute of Mathematics, Physics and Mechanics  Ljubljana  5055598000  20,258 
Within this research project we will continue our research on maps on operator and matrix algebras and their subsets. We will deal with linear preservers and nonlinear preservers, with maps on idempotents preserving various relations like orthogonality and natural partial order. We will also study geometry of matrices. Another goal of our research is to improve certain results from the theory of functional identities, and to find further applications of this theory concerning maps on operator and matrix algebras. In our research we will combine linear algebra and operator theory methods with methods from geometry and ring theory.
Significance for science
The research results of the project group are among the most important in the theory of linear and general preservers and are therefore frequently cited. On one hand, some of the results give the answers to classical difficult questions from the research area of the project group (mapping preserving adjacency, multiplicative mappings), while on the other hand they create new directions for the development of the theory (generalizations of the results about linear preservers to general not necessary linear preservers).
Significance for the country
The research project J1-9638 is in the area of pure mathematics, therefore the results of the research do not have a direct impact on the development of Slovenia. However, the wide response to the results (the number of citations) contribute significantly to recognition and reputation of Slovenia.
Most important scientific results Annual report 2008, final report, complete report on dLib.si
Most important socioeconomically and culturally relevant results Annual report 2008, final report, complete report on dLib.si
Views history