Projects / Programmes source: ARIS

Selected topics in theoretical computer science

Research activity

Code Science Field Subfield
1.07.00  Natural sciences and mathematics  Computer intensive methods and applications   

Code Science Field
P110  Natural sciences and mathematics  Mathematical logic, set theory, combinatories 
P170  Natural sciences and mathematics  Computer science, numerical analysis, systems, control 
symbolic computation, graphs, combinatorics, software tools, combinatorial optimization, chemical applications
Evaluation (rules)
source: COBISS
Researchers (8)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  12066  PhD Janez Aleš  Mathematics  Researcher  1997 - 2000  17 
2.  06895  PhD Izidor Hafner  Computer intensive methods and applications  Researcher  2000  459 
3.  08724  PhD Aleksandar Jurišić  Mathematics  Researcher  2000  209 
4.  11392  MSc Matjaž Kaufman  Mathematics  Researcher  2000  19 
5.  01935  PhD Marko Petkovšek  Mathematics  Head  1999 - 2000  366 
6.  01941  PhD Tomaž Pisanski  Mathematics  Researcher  2000  865 
7.  00213  PhD Egon Zakrajšek  Mathematics  Researcher  2000  207 
8.  03430  PhD Janez Žerovnik  Mathematics  Researcher  1998 - 2000  805 
Organisations (1)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  0101  Institute of Mathematics, Physics and Mechanics  Ljubljana  5055598000  19,658 
The key areas of the research include symbolic computation, combinatorial optimization, graph theory and combinatorics (including chemical applications), software tools, development of large-scale systems. In symbolic computation we investigate algorithms for finding exact solutions of difference, differential, and other functional equations as well as algorithms for symbolic summation and automated proving of identities. In order to implement these algorithms we use advanced computer algebra systems and object-oriented, platform-independent languages which allow for distributed software development such as Java and JavaScript. Our system ''''Vega'''' is an ongoing project which currently includes over 2500 reusable functions and is used as a testing ground for new approaches in algorithmic discrete mathematics. In particular, it provides tools for interactive improvement of visualization of data such as graphs, networks, polyhedra, Markov chains, configurations etc. by detecting symmetries and internal structure of large objects.
Views history