AMP-activated kinase (AMPK) is a major regulator of energy metabolism and a promising target for development of new treatments for type 2 diabetes and cancer. 5-aminoimidazole-4-carboxamide-1-[beta]-D-ribofuranoside (AICAR), an adenosine analogue, is a standard positive control for AMPK activation in cell-based assays. Some broadly used cell culture media, such as MEM[alpha], contain high concentrations of adenosine and other nucleosides. We determined whether such media alter AICAR action in skeletal muscle and cancer cells. In nucleoside-free media, AICAR stimulated AMPK activation, increased glucose uptake and suppressed cell proliferation. Conversely, these effects were blunted or completely blocked in MEM[alpha] that contains nucleosides. Addition of adenosine or 2'-deoxyadenosine to nucleoside-free media also suppressed AICAR action. MEM[alpha] with nucleosides blocked AICAR-stimulated AMPK activation even in the presence of methotrexate, which normally markedly enhances AICAR action by reducing its intracellular clearance. Other common media components, such as vitamin B12, vitamin C and [alpha]-lipoic acid, had a minor modulatory effect on AICAR action. Our findings show that nucleoside-containing media, commonly used in AMPK research, block action of the most widely used pharmacological AMPK activator AICAR. Results of cell-based assays in which AICAR is used for AMPK activation therefore critically depend on media formulation. Furthermore, our findings highlight a our findings highlight a role for extracellular nucleosides and nucleoside transporters in regulation of AMPK activation.
COBISS.SI-ID: 33945305
The cardiotonic steroids (CTS), such as ouabain and marinobufagenin, are thought to be adrenocortical hormones secreted during exercise and the stress response. The catalytic [alpha]-subunit of Na,K-ATPase (NKA) is a CTS receptor, whose largest pool is located in skeletal muscles, indicating that muscles are a major target for CTS. Skeletal muscles contribute to adaptations to exercise by secreting interleukin-6 (IL-6) and plethora of other cytokines, which exert paracrine and endocrine effects in muscles and non-muscle tissues. Here, we determined whether ouabain, a prototypical CTS, modulates IL-6 signaling and secretion in the cultured human skeletal muscle cells. Ouabain (2.5-50 nM) suppressed the abundance of STAT3, a key transcription factor downstream of the IL-6 receptor, as well as its basal and IL-6-stimulated phosphorylation. Conversely, ouabain (50 nM) increased the phosphorylation of ERK1/2, Akt, p70S6K, and S6 ribosomal protein, indicating activation of the ERK1/2 and the Akt-mTOR pathways. Proteasome inhibitor MG-132 blocked the ouabain-induced suppression of the total STAT3, but did not prevent the dephosphorylation of STAT3. Ouabain (50 nM) suppressed hypoxia-inducible factor-1[alpha] (HIF-1[alpha]), a modulator of STAT3 signaling, but gene silencing of HIF-1[alpha] and/or its partner protein HIF-1[alpha] did not mimic effects of ouabain on the phosphorylation of STAT3. Ouabain (50 nM) failed to suppress the phosphorylation of STAT3 and HIF-1[alpha] in rat L6 skeletal muscle cells, which express the ouabain-resistant ?1-subunit of NKA. We also found that ouabain (100 nM) promoted the secretion of IL-6, IL-8, GM-CSF, and TNF-? from the skeletal muscle cells of healthy subjects, and the secretion of GM-CSF from cells of subjects with the type 2 diabetes. Marinobufagenin (10 nM), another important CTS, did not alter the secretion of these cytokines. In conclusion, our study shows that ouabain suppresses the IL-6 signaling via STAT3, but promotes the secretion of IL-6 and other cytokines, which might represent a negative feedback in the IL-6/STAT3 pathway. Collectively, our results implicate a role for CTS and NKA in regulation of the IL-6 signaling and secretion in skeletal muscle.
COBISS.SI-ID: 29834243
Contraction-induced adaptations in skeletal muscles are well characterized in vivo, but the underlying cellular mechanisms are still not completely understood. Cultured human myotubes represent an essential model system for human skeletal muscle which can be modulated ex vivo, but they are quiescent and do not contract unless being stimulated. Stimulation can be achieved by innervation of human myotubes in vitro by co-culturing with embryonic rat spinal cord, or by replacing motor neuron activation by electrical pulse stimulation (EPS). Effects of these two in vitro approaches, innervation and EPS, were characterized with respects to the expression of myosin heavy chains (MyHCs) and metabolism of glucose and oleic acid in cultured human myotubes. Adherent human myotubes were either innervated with rat spinal-cord segments or exposed to EPS. The expression pattern of MyHCs was assessed by qPCR, immunoblotting, and immunofluorescence, while the metabolism of glucose and oleic acid were studied using radiolabeled substrates. Innervation and EPS promoted differentiation towards different fiber types in human myotubes. Expression of the slow MyHC-1 isoform was reduced in innervated myotubes, whereas it remained unaltered in EPS-treated cells. Expression of both fast isoforms (MyHC-2A and MyHC-2X) tended to decrease in EPS-treated cells. Both approaches induced a more oxidative phenotype, reflected in increased CO2 production from both glucose and oleic acid. Novelty: Innervation and EPS favour differentiation into different fiber types in human myotubes. Both innervation and EPS promote a metabolically more oxidative phenotype in human myotubes.
COBISS.SI-ID: 24641539
Denervation reduces the abundance of Na+,K+-ATPase (NKA) in skeletal muscle, while reinnervation increases it. Primary human skeletal muscle cells, the most widely used model to study human skeletal muscle in vitro, are usually cultured as myoblasts or myotubes without neurons and typically do not contract spontaneously, which might affect their ability to express and regulate NKA. We determined how differentiation, de novo innervation, and electrical pulse stimulation affect expression of NKA (? and ß) subunits and NKA regulators FXYD1 (phospholemman) and FXYD5 (dysadherin). Differentiation of myoblasts into myotubes under low serum conditions increased expression of myogenic markers CD56 (NCAM1), desmin, myosin heavy chains, dihydropyridine receptor subunit ?1S, and SERCA2 as well as NKA?2 and FXYD1, while it decreased expression of FXYD5 mRNA. Myotubes, which were innervated de novo by motor neurons in co-culture with the embryonic rat spinal cord explants, started to contract spontaneously within 7-10 days. A short-term co-culture (10-11 days) promoted mRNA expression of myokines, such as IL-6, IL-7, IL-8, and IL-15, but did not affect mRNA expression of NKA, FXYDs, or myokines, such as musclin, cathepsin B, meteorin-like protein, or SPARC. A long-term co-culture (21 days) increased the protein abundance of NKA?1, NKA?2, FXYD1, and phospho-FXYD1Ser68 without attendant changes in mRNA levels. Suppression of neuromuscular transmission with ?-bungarotoxin or tubocurarine for 24 h did not alter NKA or FXYD mRNA expression. Electrical pulse stimulation (48 h) of non-innervated myotubes promoted mRNA expression of NKAß2, NKAß3, FXYD1, and FXYD5. In conclusion, low serum concentration promotes NKA?2 and FXYD1 expression, while de novo innervation is not essential for upregulation of NKA?2 and FXYD1 mRNA in cultured myotubes. Finally, although innervation and EPS both stimulate contractions of myotubes, they exert distinct effects on the expression of NKA and FXYDs.
COBISS.SI-ID: 53364483
The hallmarks of systemic sclerosis (SSc) are autoimmunity, microangiopathy and fibrosis. Skin fibrosis is accompanied by attrition of the dermal white adipose tissue layer, and alterations in the levels and function of adiponectin. Since these findings potentially implicate adiponectin in the pathogenesis of SSc, we employed a novel pharmacological approach to augment adiponectin signaling using AdipoRon, an orally active adiponectin receptor agonist. Chronic treatment with AdipoRon significantly ameliorated bleomycin-induced dermal fibrosis in mice. AdipoRon attenuated fibroblast activation, adipocyte-to-myofibroblast transdifferentiation, Th2/Th17-skewed polarization of the immune response, vascular injury and endothelial-to-mesenchymal transition within the lesional skin. In vitro, AdipoRon abrogated profibrotic responses elicited by TGF-[beta] in normal fibroblasts, and reversed the inherently-activated profibrotic phenotype of SSc fibroblasts. In view of these broadly beneficial effects on all three cardinal pathomechanisms underlying the clinical manifestations of SSc, pharmacological augmentation of adiponectin signaling might represent a novel strategy for the treatment of SSc.
COBISS.SI-ID: 33899225