A novel two-layered pain-relieving wound dressing was prepared from a combination of biocompatible polymers: carboxymethylcellulose and polyethyleneoxide, and two types of pain-relieving drugs: the non-steroid anti-inflammatory diclofenac and the local anesthetic lidocaine. To achieve the two-layered structure, electrospinning and impregnation of a commercially available wound dressing Aquacel® were used for preparation of respective layers. The electrospun nanofibers have been shown to possess similar features as found in the extracellular matrix, an important component of the skin. This characteristic could significantly contribute to the efficiency of wound healing. The second layer is based on Aquacel®, an important wound dressing in modern wound care. Since pain can drastically lower the wound healing process, as well as it is known to decrease the overall quality of patient life, pain-relieving drugs are very interesting for wound care applications. For efficient pain reduction, two types of drugs were used. When combined, these can cover different types of wound-related pain (due to the cause and treatment) and hence additionally aid the wound healing process. The combined features of the incorporated pain-relieving drugs and the mentioned materials are therefore very interesting for future studies toward clinical testing of possible prototype products.
COBISS.SI-ID: 19019798
Wound dressings, capable of local controlled delivery of non-steroid anti-inflammatory pain-killing drugs (NSAIDs) to the wound bed, offer great potential to accelerate wound healing, hence increase the quality of patient life. With local NSAID delivery, unwanted side effects encountered in their systemic delivery, are drastically diminished. In this study, four functional fibrous wound dressing materials, namely viscose, alginate, sodium carboxymethyl cellulose (Na-CMC) and polyethylene terephthalate (PET) loaded with a NSAID, diclofenac sodium (DCF) are prepared, and their suitability to tune the release rate of DCF is evaluated. Through careful examination of material-drug combinations, in terms of their physicochemical properties (air permeability, wettability and water retention) and structural/morphological properties (infrared spectroscopy, wide angle X-ray scattering and scanning electron microscopy), possible wound care applications are proposed. In vitro release studies using an automated Franz diffusion cell system, combined with UV-Vis absorption spectroscopy for drug release profile determination, are performed as the final pre-formulation test. Results showed significant differences in the release profiles between different material-drug combinations, making the examined materials highly applicable for several wound care applications. The present study presents a novel cost effective approach for preparation of drug loaded wound dressing materials without a sacrifice in patient safety. Additionally, novel methods and material-drug combinations are introduced, paving the way for possible future wound treatment options.
COBISS.SI-ID: 18922262
The aim of the present study was to prepare a polysaccharide based nanofibrous sensor for detection of pH change in the wound environment. In order to prepare cellulose acetate (CA) nanofibers, acetic acid was used as a solvent, and fabrication of fibers was performed on the needle-less electrospinning apparatus. Long uniform CA nanofibers, with diameters ranging from 250 to 300 nm, were electrospun from 15wt% CA and 85% acetic acid, with addition of halochromic dye (Bromocrezol Green). The addition of Bromocrezol Green in the spinning formulation did not affect the fiber formation. Prepared nanofibrous sensors were characterized using CIE color space analysis in order to evaluate the color due to pH change. Nanofibrous sensors exhibit yellow color when exposed to pH4 and lower, simulating the wound environment beneficial to the wound healing, and blue color when exposed to pH9 and higher, simulating the environment that hampers wound healing (chronic, infected wounds).
COBISS.SI-ID: 18953494