Nalaganje ...
Mednarodni projekti vir: SICRIS

Open Many-body Non-Equilibrium Systems

Raziskovalci (1)
št. Evidenčna št. Ime in priimek Razisk. področje Vloga Obdobje Štev. publikacijŠtev. publikacij
1.  12279  dr. Tomaž Prosen  Fizika  Vodja  2016 - 2021  500 
Organizacije (1)
št. Evidenčna št. Razisk. organizacija Kraj Matična številka Štev. publikacijŠtev. publikacij
1.  1554  Univerza v Ljubljani, Fakulteta za matematiko in fiziko  Ljubljana  1627007  34.060 
Povzetek
We shall study non-equilibrium many-body quantum systems, considering local interactions in one or two spatial dimensions in situations where the generator of time evolution in the bulk of the system is unitary whereas the incoherent processes are limited to the system's boundaries. We foresee a mathematical theory of dynamical quantum phases of matter with applications in the theory of quantum transport and nanoscale devices that manipulate heat, information, charge or magnetization. Our steady-state setup represents a fundamental paradigm of mathematical statistical physics which has been pioneered by the PI, who gave the first explicit solution for boundary driven/dissipative strongly interacting many-body problem (XXZ spin 1/2 chain) which answered a long debated question on strict positivity of the spin Drude weight at high temperature. The main focus of OMNES will be centered on exploring the following three interconnected pathways: Most importantly, we shall develop a general framework for exact solutions of non-equilibrium integrable quantum many-body models, in particular the steady states and relaxation modes, and develop quantum integrability methods for non-equilibrium many-body density operators. Fundamentally new concepts which are expected to emerge from these studies, relevant beyond the context of boundary-driven/dissipative systems, are novel quasilocal conservation laws of the bulk Hamiltonian dynamics. Second, we shall investigate relevance of exact solutions in physics of generic systems which are small perturbations of integrable models and explore the problem of stability of local and quasilocal conserved quantities under generic integrability-breaking perturbations. Third, we shall formulate and study the problem of quantum chaos in clean lattice systems, in particular to establish a link between random matrix theory of level statistics and kinematic and dynamical features of lattice models with sufficiently strong integrability breaking.
Zgodovina ogledov
Priljubljeno