Loading...
Projekti / Programi vir: ARRS

Izomorfizmi, izometrije in ohranjevalci

Raziskovalna dejavnost

Koda Veda Področje Podpodročje
1.01.04  Naravoslovje  Matematika  Algebra 
Ključne besede
Urejenostni izomorfizem, operatorski interval, sebi-adjungirani operator, Grassmannov prostor, izometrija, operatorska norma, prostor Minkowskega, koherentnost, sosednost.
Vrednotenje (pravilnik)
vir: COBISS
Upoš. tč.
4.895,87
A''
175,09
A'
1.888,72
A1/2
2.524,3
CI10
4.514
CImax
200
h10
34
A1
16,11
A3
0
Podatki za zadnjih 5 let (citati za zadnjih 10 let) na dan 27. november 2022; A3 za obdobje 2016-2020
Podatki za razpise ARRS ( 04.04.2019 - Programski razpis, arhiv )
Baza Povezani zapisi Citati Čisti citati Povprečje čistih citatov
WoS  339  6.983  6.120  18,05 
Scopus  333  7.152  6.337  19,03 
Raziskovalci (6)
št. Evidenčna št. Ime in priimek Razisk. področje Vloga Obdobje Štev. publikacij
1.  08721  dr. Matej Brešar  Matematika  Raziskovalec  2020 - 2022  803 
2.  50783  dr. Timotej Hrga  Računalniško intenzivne metode in aplikacije  Raziskovalec  2021 - 2022  22 
3.  29584  dr. Marko Kandić  Matematika  Raziskovalec  2020 - 2022  57 
4.  33288  dr. Lucijan Plevnik  Matematika  Raziskovalec  2020 - 2022  23 
5.  05953  dr. Peter Šemrl  Matematika  Vodja projekta/programa  2020 - 2022  483 
6.  37670  dr. Matija Vidmar  Matematika  Raziskovalec  2020 - 2022  36 
Organizacije (1)
št. Evidenčna št. Razisk. organizacija Kraj Matična številka Štev. publikacij
1.  1554  Univerza v Ljubljani, Fakulteta za matematiko in fiziko  Ljubljana  1627007  31.355 
Povzetek
Ukvarjali se bomo s štirimi tesno povezanimi problemi. Že nekaj časa je znano, kateri operatorski intervali so urejenostno izomorfni in za vsak par izomorfnih operatorskih intervalov je znana splošna oblika urejenostnih izomorfizmov. Urejenostni izomorfizem med dvema operatorskima intervaloma je bijektivna preslikava, ki ohranja urejenost v obe smeri. Ali lahko odvržemo predpostavko bijektivnosti in še vedno dobimo kakšen smiselen strukturni izrek? Bolj natančno, radi bi opisali preslikave iz operatorskega intervala v množico vseh sebi adjungiranih omejenih linearnih operatorjev, ki ohranjajo urejenost v obe smeri. Predvidevamo, da je ta problem v tesni zvezi s problemom maksimalne možne razširitve urejenostnega izomorfizma med dvema operatorskima intervaloma. Eno glavnih orodij pri študiju teh problemov je fundamentalni izrek geometrije hermitskih matrik, ki opiše bijektivne ohranjevalce sosednosti na hermitskih matrikah. Tudi vsi ostali problemi, ki se jih bomo lotili v okviru tega projekta, so v tesni zvezi z ohranjevalci sosednosti. Strukturni problem za izometrije Grassmannovih prostorov na Hilbertovem prostoru je bil pred kratkim rešen v vsej splošnosti. Tu je Grassmannov prostor identificiran z množico vseh projektorjev z danim fiksnim rangom, razdalja pa je inducirana z operatorsko normo. Ta problem bomo študirali z razdaljami definiranimi z drugimi normami. Fundamentalni izrek kronogeometrije opiše splošno obliko bijektivnih preslikav na prostoru Minkowskega, ki ohranjajo koherentnost v obe smeri. Naš cilj bo poiskati optimalno verzijo tega rezultata. Radi bi opisali preslikave na prostoru Minkowskega, ki ohranjajo koherentnost samo v eni smeri in to brez privzetka injektivnosti ali surjektivnosti. Zaenkrat smo ta problem uspeli rešiti ob dodatni predpostavki zveznosti. Podobno bi radi poiskali optimalno verzijo fundamentalnega izreka geometrije Grassmannovih prostorov. Ta izrek opiše splošno obliko bijektivnih preslikav na Grassmannovih prostorih, ki ohranjajo sosednost v obe smeri. Radi bi dobili podoben rezultat brez privzetka bijektivnosti in ob šibkejši predpostavki, da se sosednost ohranja zgolj v eno smer. In še več, radi bi obravnavali take preslikave med različnimi Grassmannovimi prostori. Fundamentalni izrek geometrije Grassmannovih prostorov je mogoče zreducirati na fundamentalni izrek geometrije pravokotnih matrik. Nedavno smo uspeli poiskati optimalno verzijio fundamentalnega izreka geometrije pravokotnih matrik in domnevamo, da nam bodo ideje in tehnike, ki smo jih razvili, pomagale rešiti naš problem.
Zgodovina ogledov
Priljubljeno