Nalaganje ...
Mednarodni projekti vir: SICRIS

Light-operated logic circuits from photonic soft-matter

Raziskovalci (1)
št. Evidenčna št. Ime in priimek Razisk. področje Vloga Obdobje Štev. publikacijŠtev. publikacij
1.  09089  dr. Igor Muševič  Fizika  Vodja  2021 - 2024  751 
Organizacije (2)
št. Evidenčna št. Razisk. organizacija Kraj Matična številka Štev. publikacijŠtev. publikacij
1.  0106  Institut "Jožef Stefan"  Ljubljana  5051606000  90.767 
2.  1554  Univerza v Ljubljani, Fakulteta za matematiko in fiziko  Ljubljana  1627007  34.130 
Povzetek
I propose a revolutionary photonic technology based on self-assembled soft matter that is likely to evolve into currently unforeseen, futuristic technologies. The liquid nature and responsiveness of soft matter delivers the spontaneous self-assembly of tuneable liquid micro-lasers, liquid micro-fibres, liquid light switches, and tuneable optical micro-resonators with extremely smooth interfaces, low optical losses, elastic deformability and self-healing, all of which are difficult to obtain with hard matter. These photonic micro-devices operate exclusively on light and can be easily integrated into 3D photonic chips by micro-injection into a polymer scaffold or elastic binding via topological defect loops and points.LOGOS will create integrated and self-organized photonic chips with the focus on four specific challenges: (i) an all optically switchable spherical 3D Bragg-onion optical transistor made of chiral liquid crystals (LCs), (ii) logic micro-gates made of LCs that operate entirely on light, (iii) optically switchable Whispering-Gallery-Mode LC micro-resonators that redirect light, and (iv) soft-matter photonic integrated circuits in 3D assembled using topology. The validity of the approach will be demonstrated by AND and NAND logic gates, and an add-drop Whispering-Gallery-Mode filter, which will be assembled from soft matter and will use only light to perform the logic operation and optical signal gating and redirecting beyond the GHz range.This very high-risk, high-gain proposal challenges the mainstream photonic roadmaps by offering a disruptive technology that reduces production times, waste and energy, and enables light processing by light, all currently difficult to obtain in the solid state. LOGOS’s results will not only have a major impact on future data centres and optical networks, but could also revolutionize implantable, biocompatible and wearable photonics.
Zgodovina ogledov
Priljubljeno