Loading...
Projects / Programmes source: ARIS

Molecular predictors of radiation treatment response in breast cancer

Research activity

Code Science Field Subfield
3.04.00  Medical sciences  Oncology   

Code Science Field
B200  Biomedical sciences  Cytology, oncology, cancerology 

Code Science Field
3.02  Medical and Health Sciences  Clinical medicine 
Keywords
biomarkers, breast cancer, extracellular vesicles, miRNA, molecular predictor, personalized medicine, polymorphisms, predictive models, radiation
Evaluation (rules)
source: COBISS
Researchers (19)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  50451  Mitja Anžič  Medical sciences  Researcher  2020 - 2022 
2.  34226  MSc Andreja Gojkovič Horvat  Medical sciences  Researcher  2019 - 2022  35 
3.  34770  PhD Danijela Golo  Medical sciences  Researcher  2019 - 2022  16 
4.  33110  PhD Katja Goričar  Oncology  Head  2019 - 2022  287 
5.  36676  PhD Jasenka Gugić Kevo  Medical sciences  Researcher  2019 - 2022  31 
6.  53935  Maja Ivanetič Pantar  Medical sciences  Researcher  2020 - 2022  62 
7.  16229  PhD Viljem Kovač  Medical sciences  Researcher  2019 - 2022  297 
8.  24288  PhD Metka Lenassi  Natural sciences and mathematics  Researcher  2019 - 2022  201 
9.  54465  Sabina Lovšin    Technical associate  2020 - 2022 
10.  34225  PhD Tanja Marinko  Medical sciences  Researcher  2019 - 2022  167 
11.  39125  MSc Miha Oražem  Medical sciences  Researcher  2019 - 2022  83 
12.  20054  MSc Marija Snežna Paulin Košir  Oncology  Researcher  2019 - 2022  45 
13.  53973  Monika Praznik  Chemical engineering  Researcher  2020  11 
14.  34883  PhD Ivica Ratoša  Medical sciences  Researcher  2019 - 2022  155 
15.  38239  PhD Sara Redenšek Trampuž  Biochemistry and molecular biology  Researcher  2019 - 2022  57 
16.  34336  PhD Andrej Renčelj  Medical sciences  Researcher  2019 - 2021  22 
17.  37460  PhD Urška Slapšak  Biochemistry and molecular biology  Researcher  2020  23 
18.  20253  PhD Katarina Trebušak Podkrajšek  Human reproduction  Researcher  2019 - 2022  402 
19.  53974  Blaž Vončina  Biochemistry and molecular biology  Researcher  2020 
Organisations (2)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  0302  Institute of Oncology Ljubljana  Ljubljana  5055733000  15,433 
2.  0381  University of Ljubljana, Faculty of Medicine  Ljubljana  1627066  48,170 
Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive proliferation of neoplastic cells within the duct of the mammary gland that represents around 20% of newly diagnosed breast cancers. It is a potential precursor of invasive breast cancer. DCIS patients are treated with surgery and radiation treatment. Radiation treatment enables significantly better local control. However, most of patients treated with radiation will experience acute or late adverse events that importantly decrease patient’s quality of life. There is great interindividual variability in occurrence of adverse events and the key challenge is therefore how predict and to limit the toxicity without compromising the efficacy of the treatment. At the moment, there is no management strategy that would allow treatment personalisation regarding the risk of adverse events in clinical practice. Reliable and easy to use molecular predictors of radiation treatment response that would enable patient stratification and treatment selection in DCIS, limiting adverse events and improving treatment outcome are therefore needed. Some studies have already shown that genomic and plasma (extracellular vesicles and miRNAs) biomarkers can be associated with radiation treatment response and occurrence of adverse events. Most previous genomic studies focused on single nucleotide polymorphisms, however telomere length dynamics could also help predict response to radiation treatment. In recent years, extracellular vesicles and miRNAs from plasma emerged as new additional potential noninvasive predictors in breast cancer. Comprehensive pathway and bioinformatic analysis of published data obtained with different omics approaches would enable identification of novel potential biomarkers to be evaluated on clinical samples. However, there are currently no molecular predictors or models of radiation treatment response in DCIS that could be used in the clinical setting. If a validated molecular signature combining clinical data, genetic factors, miRNAs and characteristics of extracellular vesicles could predict acute or late toxicity, such a finding could be very important for the development of personalised radiation treatment. The aim of our study is therefore to find novel molecular predictors of radiation treatment response in DCIS patients by integrating bioinformatics data, genetic and plasma biomarkers. We will first identify novel potential biomarkers of radiation treatment response using pathway based and bioinformatic approaches. We will then investigate these potential genomic and plasma biomarkers in a clinically well-defined cohort of DCIS patients receiving adjuvant radiation treatment. We will also prepare multivariable predictive models of radiation treatment response integrating the clinical, radiation therapy parameters and biomarker data that will enable translation of our results in the clinical practice for personalization of radiation treatment.
Significance for science
The important contribution of the proposed project to science will be identification of new potential plasma, genetic and epigenetic biomarkers of radiation treatment response in breast cancer patients. The proposed study is the first that will systematically investigate genetic and plasma biomarkers of radiation treatment response in breast cancer patients, combining both comprehensive data mining, clinical samples and predictive models and using up-to-date methodologies and approaches. The role of plasma miRNA or miRNA from extracellular vesicles and role of extracellular vesicles themselves, especially regarding toxicity of radiation treatment, is not well understood, but has great potential to identify novel molecular predictors. Our study will therefore also contribute to a better understanding of the underlying molecular mechanisms involved in radiation treatment response, provide a framework for further research in this field and could be translated to other patients receiving radiation. The proposed research project thus has a great potential to lead to new and important scientific findings. Besides its impact on the research field, the results of the project are of extreme interest for clinical practice. As breast cancer is the most common cancer in women, it represents a major global public health issue. Better understanding of molecular mechanisms involved in response to treatment is crucial for identification of molecular predictors that may enable personalized treatment also for radiation treatment. The ability to identify patients at risk of severe adverse events in advance would enable a more stratified and more effective treatment of breast cancer patients and also improve their quality of life. Avoiding or reducing radiation related toxicity in predisposed patients may also decrease the likelihood of morbidities related to radiation treatment and potentially reduce healthcare costs, having a high socio-economic significance.
Significance for the country
The important contribution of the proposed project to science will be identification of new potential plasma, genetic and epigenetic biomarkers of radiation treatment response in breast cancer patients. The proposed study is the first that will systematically investigate genetic and plasma biomarkers of radiation treatment response in breast cancer patients, combining both comprehensive data mining, clinical samples and predictive models and using up-to-date methodologies and approaches. The role of plasma miRNA or miRNA from extracellular vesicles and role of extracellular vesicles themselves, especially regarding toxicity of radiation treatment, is not well understood, but has great potential to identify novel molecular predictors. Our study will therefore also contribute to a better understanding of the underlying molecular mechanisms involved in radiation treatment response, provide a framework for further research in this field and could be translated to other patients receiving radiation. The proposed research project thus has a great potential to lead to new and important scientific findings. Besides its impact on the research field, the results of the project are of extreme interest for clinical practice. As breast cancer is the most common cancer in women, it represents a major global public health issue. Better understanding of molecular mechanisms involved in response to treatment is crucial for identification of molecular predictors that may enable personalized treatment also for radiation treatment. The ability to identify patients at risk of severe adverse events in advance would enable a more stratified and more effective treatment of breast cancer patients and also improve their quality of life. Avoiding or reducing radiation related toxicity in predisposed patients may also decrease the likelihood of morbidities related to radiation treatment and potentially reduce healthcare costs, having a high socio-economic significance.
Most important scientific results Interim report
Most important socioeconomically and culturally relevant results
Views history
Favourite