Loading...
Projects / Programmes source: ARRS

Metabolic brain characteristics in neurodegenerative dementia syndromes and its correlation with histopathological brain changes

Research activity

Code Science Field Subfield
3.03.00  Medical sciences  Neurobiology   
1.02.00  Natural sciences and mathematics  Physics   

Code Science Field
3.01  Medical and Health Sciences  Basic medicine 
1.03  Natural Sciences  Physical sciences 
Keywords
Neurodegenerative diseases, biomarkers, brain imaging, network analysis, deep brain learning, histopathology, 2-[18F]FDG-PET, metabolic patterns, Alzheimer's disease, dementia with Levy bodies, dementia in Parkinson's disease, frontotemporal dementia, Creutzfeldt Jacobs disease
Evaluation (rules)
source: COBISS
Points
7,899.57
A''
1,792.06
A'
3,414.35
A1/2
5,270.27
CI10
17,991
CImax
1,916
h10
55
A1
28.01
A3
8.03
Data for the last 5 years (citations for the last 10 years) on June 9, 2023; A3 for period 2017-2021
Data for ARRS tenders ( 04.04.2019 – Programme tender, archive )
Database Linked records Citations Pure citations Average pure citations
WoS  819  18,954  18,054  22.04 
Scopus  698  21,966  20,966  30.04 
Researchers (27)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  34576  PhD Rok Berlot  Medical sciences  Researcher  2020 - 2023  98 
2.  39909  Anka Cuderman  Medical sciences  Researcher  2022 - 2023 
3.  30915  PhD Dejan Georgiev  Medical sciences  Researcher  2022 - 2023  185 
4.  28624  PhD Milica Gregorič Kramberger  Medical sciences  Researcher  2020 - 2023  220 
5.  38537  Jan Jamšek  Medical sciences  Researcher  2020 - 2023  42 
6.  33876  Luka Jensterle  Medical sciences  Researcher  2020 - 2023  40 
7.  15737  PhD Robert Jeraj  Natural sciences and mathematics  Researcher  2020 - 2023  546 
8.  53651  Žan Klaneček  Natural sciences and mathematics  Junior researcher  2020 - 2023  18 
9.  30072  PhD Maja Kojović  Medical sciences  Researcher  2020 - 2023  125 
10.  22346  PhD Luka Ležaič  Medical sciences  Researcher  2022 - 2023  229 
11.  35428  PhD Alenka Matjašič  Medical sciences  Researcher  2021 - 2023  32 
12.  54927  Jernej Mlakar  Medical sciences  Researcher  2021 - 2023  82 
13.  51885  Matej Perovnik  Medical sciences  Researcher  2020 - 2023  77 
14.  05380  PhD Zvezdan Pirtošek  Medical sciences  Researcher  2020 - 2023  731 
15.  07090  PhD Mara Popović  Medical sciences  Researcher  2020 - 2021  305 
16.  29364  PhD Sebastijan Rep  Medical sciences  Researcher  2020 - 2023  115 
17.  51578  Tomaž Rus  Medical sciences  Researcher  2020 - 2023  67 
18.  27760  PhD Urban Simončič  Natural sciences and mathematics  Researcher  2020 - 2023  103 
19.  17683  Ivan Slodnjak    Researcher  2020 - 2023  42 
20.  29238  PhD Aljaž Sočan  Natural sciences and mathematics  Researcher  2020 - 2023  83 
21.  52305  Suzana Stritar    Technician  2022 - 2023 
22.  21552  PhD Andrej Studen  Natural sciences and mathematics  Researcher  2020 - 2023  116 
23.  53652  Eva Štokelj  Natural sciences and mathematics  Junior researcher  2020 - 2023  17 
24.  24691  PhD Petra Tomše  Medical sciences  Researcher  2020 - 2023  120 
25.  15442  PhD Maja Trošt  Medical sciences  Principal Researcher  2020 - 2023  441 
26.  20484  PhD Katja Zaletel  Medical sciences  Researcher  2020 - 2023  411 
27.  28143  PhD Andrej Zupan  Medical sciences  Researcher  2021 - 2023  51 
Organisations (3)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  0312  University Medical Centre Ljubljana  Ljubljana  5057272000  73,910 
2.  0381  University of Ljubljana, Faculty of Medicine  Ljubljana  1627066  45,596 
3.  1554  University of Ljubljana, Faculty of Mathematics and Physics  Ljubljana  1627007  32,039 
Abstract
Dementia poses a major health, social and economic burden worldwide. In the aging Europe society, 10.5 million people are suffering from dementia. The major unmet need in dementia care is a lack of causative treatment. One of the reasons for that are insufficient biomarkers for various dementia syndromes that would enable early and correct diagnosis and consequently enrolment of patients with specific dementia syndromes into clinical trials. In this project we will identify and validate novel metabolic brain biomarkers of various dementia syndromes. We will for the first time validate them with the results of histopathological brain analysis. Finally, we will develop two novel automated classification algorithms based on »machine learning« methods for the analysis of metabolic brain images to improve diagnostic accuracy of dementia syndromes. The most common neurodegenerative dementias are dementia due to Alzheimer's disease (AD), dementia with Lewy bodies (DLB), Parkinson’s disease dementia (PDD) and frontotemporal dementia (FTD). AD, DLB, PDD and FTD are slowly progressing diseases as opposed to the rapidly progressive Creutzfeldt-Jacob disease (CJD).There is a significant overlap in early clinical presentation in these syndromes, with misdiagnosis rate at around 30%. While few biomarkers are already available for AD, there is a lack of biomarkers for non-AD dementias. There is an urgent need for further improvement of AD biomarkers and for the development of biomarkers for non-AD dementias. We aim to first, identify and validate specific disease-related patternsfor AD, DLB, PDD, FTD and CJD in Slovenian cohort of patients with these neurodegenerative dementias with the network analysis of their 2-[18F]FDG-PET brainimages. Second, we plan for the first time to perform a histopathological validation of AD and CJD metabolic patterns by correlating the topography and expression of AD and CJD metabolic patterns with the results of histopathological brain examination performed at autopsy. Third, we will develop two different automated types of 2-[18F]FDG-PET images analyses for the differential diagnosis of neurodegenerative dementias and compare their performance metrics. 2-[18F]FDG-PET scans of 20 patients with each of AD, DLB, PDD, FTD and CJD as well as 20 normal controls (NC) will be analysed with an automatic voxel-based scaled subprofile model analysis based on principal component analysis with the ScAnVP software to identify the characteristic patterns. These newly identified and dementia specific patterns will be then validated on an independent cohort of various dementia patients and NC, as well as by the correlation of metabolic pattern characteristics of AD and CJD with the specific histopathological brain findings. Finally, we will develop, for the first time, a multinomial logistic regression classification algorithmthat will classify patients’ 2-[18F]FDG-PET images to six classes, i.e. AD, DLB, PDD, FTD, CJD or indeterminate dementia. We will also develop a deep neural network modelconsisting of multi-layer convolutional neural network and a classifier that will classify brain images to diagnostic classes. The statistical metrics of the two algorithms will be assessed and compared, using the patients’ clinical diagnosis (or pathological diagnosis in AD and CJD) on the follow-up at least two years after scanning as gold standard. We believe, based on our preliminary results, that results of this research will significantly improve the accuracy of the diagnosis of dementia syndromesand enhance the utility of metabolic brain imaging in dementia research and in patients' diagnostic workup. To reach our goals, we have assembled an interdisciplinary research teamof neurologists, nuclear medicine specialists, pathologists and medical physicists from University Medical Centre Ljubljana and University of Ljubljana. This experienced team assures unique multidisciplinary platform for the proposed project.
Views history
Favourite