Loading...
Projects / Programmes source: ARIS

Groups, posets, and complexes

Research activity

Code Science Field Subfield
1.01.00  Natural sciences and mathematics  Mathematics   

Code Science Field
1.01  Natural Sciences  Mathematics 
Keywords
groups, posets, simplicial complexes, Cohen-Macaulay
Evaluation (rules)
source: COBISS
Points
5,697.1
A''
53.33
A'
664.38
A1/2
2,057.14
CI10
2,126
CImax
128
h10
19
A1
17.06
A3
0.3
Data for the last 5 years (citations for the last 10 years) on September 17, 2024; A3 for period 2018-2022
Data for ARIS tenders ( 04.04.2019 – Programme tender, archive )
Database Linked records Citations Pure citations Average pure citations
WoS  304  2,325  1,802  5.93 
Scopus  328  2,766  2,211  6.74 
Researchers (10)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  35452  PhD Nina Chiarelli  Mathematics  Researcher  2021 - 2024  35 
2.  34109  PhD Edward Tauscher Dobson  Mathematics  Researcher  2021 - 2024  74 
3.  52892  PhD Blas Fernandez  Mathematics  Junior researcher  2021 - 2022  23 
4.  37715  PhD Slobodan Filipovski  Mathematics  Researcher  2021 - 2024  44 
5.  56756  PhD Francesca Gandini  Mathematics  Researcher  2023 
6.  34562  PhD Matjaž Krnc  Mathematics  Researcher  2021 - 2024  99 
7.  21656  PhD Štefko Miklavič  Mathematics  Researcher  2021 - 2024  201 
8.  30211  PhD Martin Milanič  Mathematics  Researcher  2021 - 2024  320 
9.  55261  PhD Andres David Santamaria Galvis  Mathematics  Researcher  2022 - 2024  10 
10.  50355  PhD Russell Stephen Woodroofe  Mathematics  Head  2021 - 2024  83 
Organisations (1)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  1669  University of Primorska, Andrej Marušič Insitute  Koper  1810014007  11,020 
Abstract
The project will study problems at the intersection of topology, algebra, and combinatorics. The main themes of the project are motivated by posets and simplicial complexes arising in group theory. One theme concerns the "universal G-geometry" of the coset poset of a finite group. The PI and his coauthors propose to further their results on the topology of this poset. Related techniques, with a more algebraic geometry flavor, will shed new light on generalized set intersection problems. Another main goal is a minimally classification-dependent proof that the subgroup lattices of nonabelian finite simple groups are not sequentially Cohen-Macaulay. This would make effective a new characterization of solvable groups, highly orthogonal to existing characterizations, and likely would yield better techniques for demarcating between complexes that are sequentially Cohen-Macaulay and those that are not.
Views history
Favourite