Loading...
Projects / Programmes source: ARIS

Algebra, operator theory and financial mathematics

Periods
Research activity

Code Science Field Subfield
1.01.00  Natural sciences and mathematics  Mathematics   

Code Science Field
1.01  Natural Sciences  Mathematics 
Keywords
real algebraic geometry, free analysis, group theory, Noether's problem, operators and operator semigroups on Banach spaces, positive operators, vector lattices, tropical mathematics, copulas and imprecise probability
Evaluation (metodology)
source: COBISS
Points
10,706.08
A''
40
A'
4,026.46
A1/2
7,572.16
CI10
2,643
CImax
65
h10
21
A1
36.32
A3
0.82
Data for the last 5 years (citations for the last 10 years) on January 24, 2026; Data for score A3 calculation refer to period 2020-2024
Data for ARIS tenders ( 04.04.2019 – Programme tender , archive )
Database Linked records Citations Pure citations Average pure citations
WoS  604  4,131  2,942  4.87 
Scopus  612  4,577  3,343  5.46 
Organisations (2) , Researchers (47)
0101  Institute of Mathematics, Physics and Mechanics
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  12040  PhD Janez Bernik  Mathematics  Researcher  2022 - 2023  127 
2.  13430  PhD Gregor Cigler  Mathematics  Researcher  2022 - 2026  62 
3.  15127  PhD Jakob Cimprič  Mathematics  Researcher  2022 - 2026  87 
4.  05478  PhD Mirko Dobovišek  Mathematics  Retired researcher  2022 - 2026  149 
5.  16331  PhD David Dolžan  Mathematics  Researcher  2022 - 2026  167 
6.  11709  PhD Roman Drnovšek  Mathematics  Researcher  2022 - 2026  284 
7.  59804  PhD Alen Đurić  Mathematics  Researcher  2024 - 2025 
8.  36370  PhD Matej Filip  Mathematics  Researcher  2023 - 2026  37 
9.  54861  Martin Jesenko  Mathematics  Researcher  2023 - 2026  25 
10.  35334  PhD Urban Jezernik  Mathematics  Researcher  2022 - 2026  58 
11.  29584  PhD Marko Kandić  Mathematics  Researcher  2022 - 2026  74 
12.  22353  PhD Igor Klep  Mathematics  Head  2022 - 2026  320 
13.  12190  PhD Damjana Kokol Bukovšek  Mathematics  Researcher  2022 - 2026  178 
14.  08398  PhD Tomaž Košir  Mathematics  Researcher  2022 - 2023  452 
15.  53447  Nikola Kovačević  Mathematics  Young researcher  2022 - 2023 
16.  20037  PhD Marjeta Kramar Fijavž  Mathematics  Researcher  2022 - 2026  197 
17.  59584  Matevž Miščič  Mathematics  Young researcher  2024 - 2026 
18.  23213  PhD Blaž Mojškerc  Economics  Researcher  2022 - 2026  75 
19.  20268  PhD Primož Moravec  Mathematics  Researcher  2022 - 2026  245 
20.  22723  PhD Polona Oblak  Mathematics  Researcher  2022 - 2026  148 
21.  24328  PhD Aljoša Peperko  Mathematics  Researcher  2022 - 2026  228 
22.  60371  Andras Sandor, Ph.D.  Mathematics  Researcher  2025 - 2026 
23.  60724  PhD Lav Kumar Singh  Mathematics  Researcher  2025 - 2026 
24.  32023  PhD Nik Stopar  Mathematics  Researcher  2022 - 2026  75 
25.  28585  PhD Klemen Šivic  Mathematics  Researcher  2022 - 2026  57 
26.  30826  PhD Janez Šter  Mathematics  Researcher  2022  31 
27.  12191  PhD Aleksej Turnšek  Mathematics  Researcher  2022 - 2026  100 
28.  55096  PhD Jurij Volčič  Mathematics  Researcher  2022  37 
29.  51877  PhD Lara Vukšić  Mathematics  Young researcher  2022 
30.  60824  Igor Zobovič  Mathematics  Researcher  2025 
1554  University of Ljubljana, Faculty of Mathematics and Physics
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  60608  Marco Barbieri, Ph.D.  Mathematics  Researcher  2025 - 2026 
2.  12040  PhD Janez Bernik  Mathematics  Researcher  2022 - 2023  127 
3.  13430  PhD Gregor Cigler  Mathematics  Researcher  2025 - 2026  62 
4.  15127  PhD Jakob Cimprič  Mathematics  Researcher  2022 - 2026  87 
5.  16331  PhD David Dolžan  Mathematics  Researcher  2022 - 2026  167 
6.  11709  PhD Roman Drnovšek  Mathematics  Researcher  2022 - 2026  284 
7.  61070  Abhay Jindal, Ph.D.  Mathematics  Researcher  2025 - 2026 
8.  29584  PhD Marko Kandić  Mathematics  Researcher  2022 - 2026  74 
9.  22353  PhD Igor Klep  Mathematics  Researcher  2022 - 2026  320 
10.  08398  PhD Tomaž Košir  Mathematics  Researcher  2022 - 2023  452 
11.  20268  PhD Primož Moravec  Mathematics  Researcher  2022 - 2026  245 
12.  22723  PhD Polona Oblak  Mathematics  Researcher  2025 - 2026  148 
13.  61245  PhD Aleksandra Konstancja Puchalska  Mathematics  Researcher  2025 - 2026 
14.  60124  Matthias Alfred Erich Schötz, Ph.D.  Mathematics  Researcher  2025 
15.  28585  PhD Klemen Šivic  Mathematics  Researcher  2024 - 2026  57 
16.  59987  Domen Zevnik  Mathematics  Young researcher  2024 - 2026 
17.  58227  PhD Andoni Zozaya Ursuegui  Mathematics  Researcher  2024 - 2025 
Abstract
The research program will focus on research in algebra and operator theory, and will explore their applications in financial mathematics. The main fields of research include group theory, real algebraic geometry, the theory of operators on Banach spaces and lattices. In financial mathematics we will conduct research on stochastic analysis. In real algebraic geometry, we will investigate positive noncommutative functions and matrix convex sets. We will also explore the application of our advances to the theory of linear control systems, optimization and quantum information. In group theory, we will develop homological methods for studying the problem of Emmy Noether and its applications in algebraic geometry and K-theory. At the same time, we will also tackle modern combinatoric group theory through Babai's conjecture about the diameter of Cayley's graphs of finite simple groups. In linear algebra and algebraic geometry, we will research the classical problems of simultaneous similarity of tuples of matrices and the variety of commuting matrix tuples. We will study the properties of operators and one-parameter operator semigroups, where we will be the first to systematically go beyond Banach spaces. To this aim we will investigate other known notions of convergence and topology, especially the unbounded ones, on ordered spaces, vector lattices or Banach lattices. We will also be interested in the spectral theory of operators and related operator inequalities, where we intend to settle the 30 year old open problem of Huijmans and de Pagter. Further, we shall continue with the development of tropical methods for the studies of nonlinear operator problems. We will also strive to apply our results in financial mathematics, e.g. in the area of random processes arising from stochastic partial differential equations. With the rising importance of precise and imprecise probability in practical applications, especially in the field of statistics and finance, there is a greater than ever need for a deeper investigation and understanding of existing mathematical models for imprecise probability and for the development of new alternative models. The central role when modeling the dependence of random variables here is played by copulas. We will therefore research copulas, quasi-copulas, multivariate distributions, and the related Sklar’s theorem.
Significance for science
Achieved results will be important for the development of the mathematical sciences. Since we will be studying problems that have been raised in the international mathematical community, we expect that their solutions will attract a considerable amount of attention. The results will be very important for the development of algebra, operator theory and their applications to mathematical finance. New results will shed light on the structure of operators and families of operators. They will also be important in the study of the invariant subspace problem, real algebraic geometry, abstract group theory, and elsewhere. Many of our results have already attracted a considerable amount of attention. We expect that the same will be true going forward. We will intensively pursue and advance scientific collaboration with leading mathematicians around the world. We will publish our results in prestigious international scientific journals, present them at the international scientific meetings and at invited lectures at foreign universities.
Significance for the country
We transfer the newest scientific results to our students. In this way we contribute to social and economic development. Our results are, we believe, an important part of Slovenian mathematical research, which is fundamental for many other sciences. Research in the field of financial mathematics will contribute to the transfer of knowledge to the students of the new study program of Financial Mathematics at the University of Ljubljana. In addition, this part of our research is directly applicable to the financial sector of the economy (insurance companies, banks, other financial institutions, etc.). We have already encountered a considerable interest from the Slovenian financial industry, the central bank, and others.
Views history
Favourite