Projects / Programmes source: ARIS

Exploitation of the magneto-mechanical effect in the treatment of neurodegenerative diseases

Research activity

Code Science Field Subfield
2.04.00  Engineering sciences and technologies  Materials science and technology   

Code Science Field
2.10  Engineering and Technology  Nano-technology 
magneto-mechanical effect, magnetic nanoparticles, amyloid beta, nanomedicine, Alzheimer's disease (AD), anisotropic magnetic nanoparticles
Evaluation (rules)
source: COBISS
Data for the last 5 years (citations for the last 10 years) on May 25, 2024; A3 for period 2018-2022
Data for ARIS tenders ( 04.04.2019 – Programme tender, archive )
Database Linked records Citations Pure citations Average pure citations
WoS  953  24,857  21,254  22.3 
Scopus  1,038  27,533  23,741  22.87 
Researchers (28)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  38497  PhD Maja Bjelošević Žiberna  Pharmacy  Researcher  2021 - 2024  79 
2.  56160  Tina Černič    Technical associate  2022 - 2023 
3.  53585  PhD Črt Dragar  Pharmacy  Junior researcher  2021 - 2024  38 
4.  34354  PhD Urška Dragin Jerman  Oncology  Researcher  2021 - 2023  61 
5.  15873  PhD Mateja Erdani Kreft  Neurobiology  Researcher  2021 - 2024  410 
6.  58250  PhD Parvaneh Esmaeilnejad Ahranjani  Materials science and technology  Researcher  2023 - 2024  39 
7.  11789  PhD Mirjana Gašperlin  Pharmacy  Researcher  2021 - 2024  600 
8.  29887  PhD Mirjam Gosenca Matjaž  Pharmacy  Researcher  2021 - 2024  142 
9.  26478  PhD Sašo Gyergyek  Materials science and technology  Researcher  2021 - 2024  292 
10.  18699  Mojca Keržan    Technical associate  2021 - 2024 
11.  24402  PhD Petra Kocbek  Pharmacy  Researcher  2021 - 2024  296 
12.  29529  PhD Slavko Kralj  Materials science and technology  Head  2021 - 2024  253 
13.  09032  PhD Julijana Kristl  Pharmacy  Retired researcher  2021 - 2024  932 
14.  15148  PhD Darja Lisjak  Materials science and technology  Researcher  2021 - 2024  414 
15.  10372  PhD Darko Makovec  Materials science and technology  Researcher  2021 - 2024  667 
16.  14079  PhD Alenka Mertelj  Physics  Researcher  2021 - 2024  294 
17.  52055  PhD Sebastjan Nemec  Materials science and technology  Researcher  2021 - 2024  57 
18.  56647  Hristina Obradović  Neurobiology  Researcher  2022 - 2023 
19.  28861  PhD Stane Pajk  Pharmacy  Researcher  2021 - 2024  189 
20.  54701  Žiga Ponikvar  Materials science and technology  Junior researcher  2021 - 2024  15 
21.  37548  PhD Tanja Potrč  Pharmacy  Researcher  2022 - 2024  43 
22.  28393  PhD Nataša Resnik  Biochemistry and molecular biology  Researcher  2021 - 2024  88 
23.  11654  PhD Rok Romih  Neurobiology  Researcher  2022 - 2024  248 
24.  23549  PhD Robert Roškar  Pharmacy  Researcher  2021 - 2024  305 
25.  17885  Linda Štrus    Technical associate  2023 - 2024 
26.  33100  PhD Larisa Tratnjek  Neurobiology  Researcher  2021  62 
27.  36439  PhD Špela Zupančič  Pharmacy  Researcher  2021 - 2024  128 
28.  39124  PhD Taja Železnik Ramuta  Biochemistry and molecular biology  Researcher  2021  104 
Organisations (3)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  0106  Jožef Stefan Institute  Ljubljana  5051606000  90,976 
2.  0381  University of Ljubljana, Faculty of Medicine  Ljubljana  1627066  48,429 
3.  0787  University of Ljubljana, Faculty of Pharmacy  Ljubljana  1626973  17,246 
The mechanisms and pathogenesis of many neurodegenerative diseases such as Alzheimer disease (AD) and Parkinson disease are not completely understood. However, it is hypothesized that clearance of amyloid beta (Ab) aggregates in AD-patient can result in cognitive improvement and reverse the progression of disease. The Ab aggregates should be disrupted into insoluble fragments and not to soluble Ab peptide oligomers. Recently, soluble Ab peptide oligomers rather than insoluble fragments have been implicated in disease pathology. New methods for Ab disruption have been proposed based on nanotechnology as the answer to the presented challenges in the last decade. Heating of magnetic nanoparticles in the presence of radio frequency alternating magnetic field (RF-AMF, >100 kHz) has been suggested as a means to disaggregate Ab deposits. However, the approaches based on local heating of Ab aggregates with the nanoparticles demonstrate important drawbacks, since mainly soluble, and presumably toxic, Ab oligomers are generated during the Ab disruption process. This is still an unsolved challenge and the scientific arena is urgently seeking for possibly nanotech-based solutions to reduce the size of Ab aggregates in a controlled manner, and preferentially via remote and mechanical breaking up Ab aggregates into fragments. In this project we propose an entirely new concept for the disruption of Ab deposits based on the transformation of low frequency AMF (LF-AMF; up to 1kHz) energy into mechanical energy, mediated by anisotropic magnetic nanoparticles. When an anisotropic particle is placed in a magnetic field (B), it tends to align with a direction of the magnetic field vector. This causes rotation of the anisotropic particles in the direction of the field, which results in transfer of the induced force (magnetic torque tm) onto its surroundings. Three different types of anisotropic magnetic particles will be developed and tested, i.e., nanochains, configurable nanochains with sharp edges (i.e., nanoblades), and nanoplatelets. The particles cover various shapes and sizes, and vary in basic magnetic properties. The smallest nanoplatelets (50 nm wide and 3 nm thick) show hard-magnetic properties with high anisotropy. In contrast, larger nanochains and nanoblades (300 and 900 nm) display superparamagnetic properties. They mainly differ in the shape: the nanochains have round, smooth edges and the nanoblades have sharp edges. A remotely triggered mechanical torque of anisotropic magnetic particles selectively attached to Ab fibrils, which will be promoted by particles active targeting using Phe-Phe motif, will be studied to mechanically break up self-assembled Ab aggregates. The aggregates will disintegrate preferentially into fragments and not to toxic soluble Ab peptide oligomers because our approach fully exclude any local heating. The hope is that the mechanically broken protofibril-like fragments will expose new surfaces that can be easily recognized by immune-defence cells such as M2 microglia and thus naturally eliminated from the brain tissue. This mechanical disruption of the Ab aggregates could lead to a cure, not only for Alzheimer’s disease, but also other diseases linked to aberrantly folded peptides or proteins forming insoluble plaques. Moreover, the magneto-mechanical effect could also be beneficially applied for treating other diseases in the future, e.g., magneto-mechanical eradication of cancer cells or thrombus in blood vessels. Magnetic anisotropic particles can also be used for their magnetic targeting and simultaneous diagnostics as MRI contrast agent which is, in combination with therapy, agent for theranostics. The planned research will also be very important for understanding the nanoparticles’ interactions with the bio-relevant systems, which is the key issue in nanotechnology.
Views history