Loading...
Projects / Programmes source: ARIS

Self-assembled and advanced biopolymer coatings for microencapsulation of probiotics and starter cultures

Research activity

Code Science Field Subfield
4.03.00  Biotechnical sciences  Plant production   

Code Science Field
4.01  Agricultural and Veterinary Sciences  Agriculture, Forestry and Fisheries 
Keywords
microbial microencapsulation; carrier design; biopolymers; self assembly; augmented fermentation; targeted delivery; product inhibition resistance
Evaluation (rules)
source: COBISS
Points
12,183
A''
2,633.16
A'
6,679.04
A1/2
8,894.13
CI10
16,920
CImax
811
h10
58
A1
44.17
A3
15.42
Data for the last 5 years (citations for the last 10 years) on July 17, 2024; A3 for period 2018-2022
Data for ARIS tenders ( 04.04.2019 – Programme tender, archive )
Database Linked records Citations Pure citations Average pure citations
WoS  734  17,138  14,977  20.4 
Scopus  735  18,924  16,630  22.63 
Researchers (27)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  28299  PhD Martina Avbelj  Biotechnology  Researcher  2022 - 2024  73 
2.  39095  PhD Miha Bahun  Biochemistry and molecular biology  Researcher  2020 - 2024  46 
3.  11150  PhD Bojana Bogovič Matijašić  Animal production  Researcher  2020 - 2024  395 
4.  51167  Doris Bračič  Textile and leather  Researcher  2020 - 2022  25 
5.  24407  PhD Iztok Dogša  Biotechnology  Researcher  2020 - 2024  195 
6.  52167  PhD Andi Erega  Biotechnology  Researcher  2021  27 
7.  19753  PhD Lidija Fras Zemljič  Textile and leather  Researcher  2020 - 2024  547 
8.  25788  PhD Boštjan Genorio  Materials science and technology  Researcher  2020 - 2024  331 
9.  52407  Špela Gruden  Biochemistry and molecular biology  Researcher  2022 - 2024  13 
10.  18511  PhD Polona Jamnik  Biotechnology  Researcher  2020 - 2024  911 
11.  56432  Terezija Jovanovski  Biotechnology  Researcher  2022 
12.  17916  PhD Iztok Jože Košir  Chemistry  Researcher  2020 - 2024  558 
13.  24332  PhD Manja Kurečič  Materials science and technology  Researcher  2020 - 2024  231 
14.  38177  PhD Jaka Levanič  Forestry, wood and paper technology  Researcher  2021  37 
15.  25516  PhD Petra Mohar Lorbeg  Animal production  Researcher  2020 - 2024  120 
16.  39099  PhD Katja Molan  Biochemistry and molecular biology  Researcher  2023 - 2024  44 
17.  37419  PhD Miha Ocvirk  Plant production  Researcher  2020 - 2024  178 
18.  29336  PhD Ilja Gasan Osojnik Črnivec  Chemistry  Head  2020 - 2024  247 
19.  36376  PhD Diana Paveljšek  Animal production  Researcher  2020 - 2024  38 
20.  19268  PhD Zdenka Peršin Fratnik  Materials science and technology  Researcher  2022  226 
21.  50561  PhD Nejc Petek  Chemistry  Researcher  2022 - 2024  54 
22.  35476  PhD Olivija Plohl  Textile and leather  Researcher  2020 - 2024  111 
23.  10873  PhD Nataša Poklar Ulrih  Chemistry  Researcher  2020 - 2024  843 
24.  23417  PhD Iztok Prislan  Chemistry  Researcher  2020 - 2024  202 
25.  53547  PhD Ksenija Rutnik  Chemistry  Junior researcher  2020 - 2024  28 
26.  15466  PhD Mihaela Skrt  Biotechnology  Researcher  2020 - 2024  160 
27.  51227  PhD Luka Šturm  Biochemistry and molecular biology  Researcher  2020 - 2024  50 
Organisations (4)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  0481  University of Ljubljana, Biotechnical Faculty  Ljubljana  1626914  67,254 
2.  0103  University of Ljubljana, Faculty of Chemistry and Chemical Technology  Ljubljana  1626990  23,447 
3.  0416  Slovenian Institute of Hop Research and Brewing  Žalec  5051762000  4,279 
4.  0795  University ob Maribor, Faculty of mechanical engineering  Maribor  5089638010  24,090 
Abstract
Microencapsulation involves coating or entrapping of a core material with a polymeric material to generate microspheres, microcapsules or micro aggregates in the size range of 1–1000 µm. This versatile technology has been used to encapsulate a wide array of products such as pharmaceuticals, flavours, volatile oils, plant extracts, enzymes and other functional compounds. In recent decades, this technology has also been applied to the area of microbial cell immobilization owing to its numerous advantages over other cell immobilization techniques. Due to the abundance of natural biopolymers of diverse surface and colloidal properties, as well as the ability to study their interactions at the molecular level, numerous opportunities are offered for dedicated development of advanced delivery systems for encapsulation of microorganisms, especially for biotechnological food processes and in development of probiotics intended for ingestion. The purpose of encapsulation of cells is strongly dependent on its intended end-use. For encapsulation of starter cultures used in various fermentation processes, the goal is to shorten the period of adaptation in the slurry, achieve high cell density within the carrier, improve the kinetics of the process, reduce the possibility of microbial contamination and allow for easier separation and reuse of biomass for the next batch. For the case of probiotics which are intended for ingestion, the objectives of encapsulation are different as the carrier provides protection during storage and digestion, as well as in more advanced applications acting as a delivery system to reach target parts of the digestive tract or other tissues. In the field of material science, a number of properties have been shown to provide the basis for linking of biopolymers and related molecules as natural building blocks to provide either hollow, or porous and non-porous structures with varying degrees of internal and external organization thus indicating a part of their encapsulating potential. In particular, polymers, such as structural components of the cell wall of plants (pectin) or algae (alginate) or starch and its derivatives offer numerous possibilities for the preparation of materials with controlled size, morphology, surface and structural properties. Our project will be based on thorough characterization of the respective natural substances (mostly plant derived polysaccharides and other plant-based components), and their use as building blocks for self-assembly or targeted organization. The acquired supramolecular structures will serve as stand-alone encapsulants, as well as dedicated structural templates for a wide variety of microbial encapsulation approaches in order to suit to products, which are intended for ingestion and / or for contact with foodstuffs. The selected carriers will be used for two markedly different end-use applications, i.e. (i) for encapsulation of yeasts for optimized ethanol production, (ii) and to improve gut retention and act as a prebiotic for our own isolates of lactobacillus probiotics. In both cases, we will determine the encapsulation efficiency parameters, the level of supported and sustained microbial activity, as well as at the cellular level, the capability of the encapsulation system for fermentation or targeted delivery of microorganisms. The research project will set out to reach beyond the established alginate hydrogel systems using plant derived materials with more precisely defined surface characteristics in order to study the overlying physical, chemical and biological mechanisms that govern the efficiency of the microencapsulation process. We will employ and extend recent advances in the field of material science in order to generate in depth knowledge to allow for the design of food safe encapsulation carriers, perform through characterisation and material screening, as well as assess the suitability of such microencapsulated biomass for tacking current specific field i
Views history
Favourite