Loading...
Projects / Programmes source: ARIS

Advanced materials for low-carbon and sustainable society

Periods
January 1, 2022 - December 31, 2027
Research activity

Code Science Field Subfield
2.04.00  Engineering sciences and technologies  Materials science and technology   
1.04.00  Natural sciences and mathematics  Chemistry   

Code Science Field
2.05  Engineering and Technology  Materials engineering 
1.04  Natural Sciences  Chemical sciences 
Keywords
advanced materials, renewable energy, sustainable materials, lowcarbon technologies, solar technologies, spectrally selective paints, batteries, fuel cells, electrocatalysis, corrosion protection, photoelectrocatalysts
Evaluation (rules)
source: COBISS
Points
21,085.04
A''
8,044.97
A'
12,956.67
A1/2
17,519.34
CI10
74,031
CImax
18,863
h10
98
A1
80.08
A3
19.92
Data for the last 5 years (citations for the last 10 years) on February 21, 2024; A3 for period 2018-2022
Data for ARIS tenders ( 04.04.2019 – Programme tender , archive )
Database Linked records Citations Pure citations Average pure citations
WoS  1,438  88,178  82,025  57.04 
Scopus  1,450  93,378  87,010  60.01 
Researchers (54)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  54611  PhD Federico Baiutti  Materials science and technology  Researcher  2023 - 2024  47 
2.  11517  PhD Marjan Bele  Materials science and technology  Researcher  2022 - 2024  542 
3.  50903  PhD Hanna Budasheva  Chemistry  Junior researcher  2022  36 
4.  52041  PhD Matjaž Dlouhy  Chemistry  Researcher  2022 - 2024  43 
5.  53341  PhD Ana Drinčić  Chemistry  Researcher  2022 - 2024  29 
6.  55664  Tina Đukić  Materials science and technology  Junior researcher  2023 - 2024  18 
7.  53611  Marko Firm  Materials science and technology  Junior researcher  2022 
8.  04537  PhD Mladen Franko  Control and care of the environment  Researcher  2022 - 2024  607 
9.  00582  PhD Miran Gaberšček  Materials science and technology  Head  2022 - 2024  896 
10.  54900  Lea Gašparič  Chemistry  Junior researcher  2022 - 2024  21 
11.  38256  PhD Matija Gatalo  Materials science and technology  Researcher  2022 - 2024  129 
12.  55826  Erik Gregori  Chemistry  Junior researcher  2022 - 2024 
13.  30470  PhD Nejc Hodnik  Materials science and technology  Researcher  2022 - 2024  374 
14.  54168  Armin Hrnjić  Materials science and technology  Junior researcher  2023 - 2024  39 
15.  27945  PhD Ivan Jerman  Chemistry  Researcher  2022 - 2024  382 
16.  35375  PhD Primož Jovanovič  Chemistry  Researcher  2023 - 2024  184 
17.  55959  Ana Rebeka Kamšek  Materials science and technology  Junior researcher  2023 - 2024  53 
18.  27919  Barbara Kapun  Chemistry  Technical associate  2022 - 2024  77 
19.  27920  Gregor Kapun  Chemistry  Technical associate  2022  102 
20.  04423  PhD Marta Klanjšek Gunde  Electronic components and technologies  Researcher  2022 - 2024  561 
21.  16188  PhD Anton Kokalj  Chemistry  Researcher  2022 - 2024  377 
22.  38631  PhD Anja Kopač Lautar  Materials science and technology  Researcher  2022  38 
23.  31463  PhD Dorota Agnieszka Korte  Control and care of the environment  Researcher  2022 - 2024  155 
24.  54890  PhD Dževad Kozlica  Materials science and technology  Researcher  2023 - 2024  19 
25.  53542  Ana Kraš  Chemistry  Technical associate  2022 - 2024  10 
26.  54667  Alenka Križan  Chemistry  Junior researcher  2022 
27.  54864  Anja Logar  Materials science and technology  Junior researcher  2023 - 2024  31 
28.  24976  PhD Milena Martins  Materials science and technology  Researcher  2022 - 2024  102 
29.  34106  Ivana Maver    Technical associate  2022 - 2024 
30.  01290  PhD Ingrid Milošev  Chemistry  Researcher  2022 - 2024  688 
31.  56648  PhD Swapna Mohanachandran Nair Sindhu  Materials science and technology  Researcher  2022 - 2024  118 
32.  50241  PhD Leonard Jean Moriau  Materials science and technology  Researcher  2022 - 2024  62 
33.  28561  PhD Jože Moškon  Materials science and technology  Researcher  2022  85 
34.  51703  PhD Rekha Narayan  Materials science and technology  Researcher  2022  25 
35.  55050  PhD Mohammed A. Nazrulla  Materials science and technology  Researcher  2023 - 2024  28 
36.  39110  PhD Luka Noč  Chemistry  Researcher  2022 - 2023  26 
37.  53615  PhD Luka Pavko  Materials science and technology  Junior researcher  2022 - 2024  41 
38.  37480  PhD Matic Poberžnik  Chemistry  Researcher  2023 - 2024  59 
39.  52019  PhD Stefan Popović  Materials science and technology  Junior researcher  2022 - 2024  15 
40.  35874  PhD Terezija Poženel  Materials science and technology  Researcher  2023 - 2024 
41.  57904  Andrej Race    Technical associate  2023 - 2024 
42.  57056  Lana Regent  Materials science and technology  Researcher  2022 
43.  37779  PhD Francisco Ruiz Zepeda  Materials science and technology  Researcher  2022 - 2024  226 
44.  57397  PhD Denis Sačer  Chemistry  Researcher  2023 - 2024  24 
45.  53024  PhD Milutin Smiljanić  Materials science and technology  Researcher  2022 - 2024  69 
46.  53166  PhD Sonja Smiljanić  Materials science and technology  Researcher  2023 - 2024  26 
47.  55215  PhD Ivan Spajić  Chemistry  Researcher  2022  11 
48.  17271  Helena Spreizer    Technical associate  2023 - 2024  35 
49.  23516  PhD Dušan Strmčnik  Materials science and technology  Researcher  2022 - 2024  113 
50.  14121  PhD Angelja Kjara Surca  Chemistry  Researcher  2022 - 2024  399 
51.  57439  Jelena Štrbac  Electronic components and technologies  Technical associate  2023 - 2024 
52.  53128  Nigel Van de Velde    Technical associate  2023 - 2024  22 
53.  35504  PhD Alen Vižintin  Chemistry  Researcher  2022  137 
54.  56966  Ožbej Vodeb  Materials science and technology  Junior researcher  2022 - 2024 
Organisations (3)
no. Code Research organisation City Registration number No. of publicationsNo. of publications
1.  0104  National Institute of Chemistry  Ljubljana  5051592000  21,470 
2.  0106  Jožef Stefan Institute  Ljubljana  5051606000  89,961 
3.  1540  University of Nova Gorica  Nova Gorica  5920884000  13,877 
Abstract
The programme is focused on synthesis, characterisation, understanding and practical application of novel materials for sustainable development. The main focus is on materials that can either contribute to a decrease of the negative influence of human activities on environment and, at the same time, lead to new generations of materials with significantly improved properties. An example are materials for low-carbon energy sources or strategic materials with significantly prolonged lifetime. In order to meet the high requirements for use in advanced sustainable technologies the materials need to fullfil at least the following criteria: a) multifunctionality, b) stability during usage/operation, c) safety, d) environmental acceptability. All criteria are strongly correlated with the materials architecture on small scales. Creation of highly defined architectures on atomic level will be carried out through precise control of reactants on atomic or molecular scale, combined with understanding of interactions between various phases and their impact on final properties. Experimental techniques will be consistently upgraded with appropriate theoretical modeling. Using these principles, several classes of materials will be investigated: A) Paints and other technologies for exploitation of solar energy, B) Materials for energy storage (Liion and post-Li-ion such as sulphur, magnesium, aluminium batteries etc.), C) Materials for energy conversion (mostly electrocatalysts for fuel cells, electrocatalysers and other conversions), D) Surfaces of strategic metals with improved stability. The programme group has excess to a large set of most modern equipment for materials structural characterisation, chemical, electrochemical, physical and analyses. Finally, the group includes several experts that master modeling on various levels - from abinitio to continuum level. Combining modeling with designed experiments (model experiments) has given important insights so far and this approach will be preserved also in the next stage of this programme. To keep the high intensity and further enrich the approaches of our reasearch we will continue to cooperate with most established research institution across the world. The programme will retain a big focus on education of young engineers and scientist. Finally, the knowledge will be continuously transferred to our industrial partners, both in Slovenia and worldwide.
Significance for science
Postulated objectives of the possibility of full control of matter on atomic level are presenting both a scientific and a methodological challenge. At the scientific level, the current state-of-the-art is represented by only a partial control of the matter on atomic level while the majority of locations in given matter are poorly controlled (presence of unwanted agglomerates, aggregates, nanoscopic features etc.). Radically new methodologies employing multidisciplicary approaches are needed to master the atomic-level control over the large majority of a macroscopic material, especially when it is excpected to deliver a precise functionality. It is envisioned that the progress toward such full control will be gradual, with occasional important breakthroughs. Those are always going to be high-end achievement publishable in most prestigious journal (Nature family, Science etc.). As our research is by definition interdisciplinary, we expect a different impact when it comes to the particular field of research. For example, the potential impact of electrocatalysis will be achieved via the development of new generations of much more precisely prepared catalysts, new methodologies for control of preparation and revealing new mechanistic insight, and advanced modeling explaining the catalyst operation under realistic conditions. In the case of materials for solar applications we expect a much more precise preparation of composites where the building units will be atomic-level objects (atomic layers, homogeneousl doped objects etc.). In the field of batteries we expect extreme progress in several directions: mastering the surfaces of metals by decorating them, either electrochemically or chemically with very well defined thin layers, mastering solid-solid interfaces and ultimately identifying and alleviating the burning question of fast degradation of state-of-the-art batteries. In the research of strategic metals th emost important goals will be to unravel corrosion inhibition mechanisms and metal-inhibitor interactions to create a virtual laboratory as to diminish the use of necessary chemicals and experiments. At the methodological level, a comprehensive combination of organic and inorganic syntheses, experimental characterization and molecular modeling will be utilized including design-of-experimental (DoE) approach in optimization of synthesis of contemporary coatings.
Significance for the country
In the near future the Industry 4.0 concept will determine the new pace of the world's progress. For this purpose much better technological solutions compared to those offered by current nanotechnological solutions will be needed. Thus, control of matter on atomic level is imminent. As regards the electrochemical reactions, they will be an integral part of the worldwide electrification to take place already in the next years and will continue for decades to come. At that point, many national and international companies will - besides fundamental knowledge - also need new know-how solutions regarding the emerging energy conversion materials, devices and practical processes. Importantly, the future technologies will also need people with new skills some of which are going to be educated within our programme. Electrochemistry-oriented topics include but are not limited to electrocatalysts for energy conversion (fuel cells and electrolyzers) and electrosynthesis (carbon and nitrogen cycles), hydrometallurgical recycling of critical raw materials like precious metals, electrochemical technologies for solar applications, electrochromic devices, and last but not least a range of batteries and supercapacitors. Currently, we are collaborating with Mebius (PEM fuel cell), Recytalyst (catalyst producer), ElringKlinger AG (e-mobility, fuel cells), Johnson Matthey (catalyst producer), Honda, Hidria, etc. In the field of corrosion challenges are enormous at the global level reaching trillions of dollars (3.4% BDP), the highest being in infrastructure (bridges, gas and liquid pipelines, material storages...), utilities like water and gas supplies, and transportation (railroads, cars, aircraft, ...). Even a small lifetime extension of metal constructions can save millions in maintenance and repair costs. It is generally agreed that 15-35% of corrosion costs could be avoided annually by appropriate corrosion mitigation strategies amounting up to between 370 and 800 billion USD.5,6 These savings can be spent for other purposes such as new products, societal and educational purposes, etc.
Views history
Favourite